

Seminar on neutron research centre in the Øresund region (European Spallation Source)

29 November 2002

ESS, P&T and EU

What is the impact of ESS and P&T on EU 's energy policy?

On EU-financed research?

Yves Marignac, Assistant Director, WISE-Paris

The issue of ESS and P&T research inside the EU

Current status of nuclear energy in the EU

Nuclear energy in Member States – Euratom and the Commission Accessing countries – Euratom reform – The "Nuclear Package"

Current status of long-lived waste management in the EU

Spent fuel management in Member States – R&D programmes Roadmap to ADS – Project directive on nuclear waste management

Current status of European-financed R&D

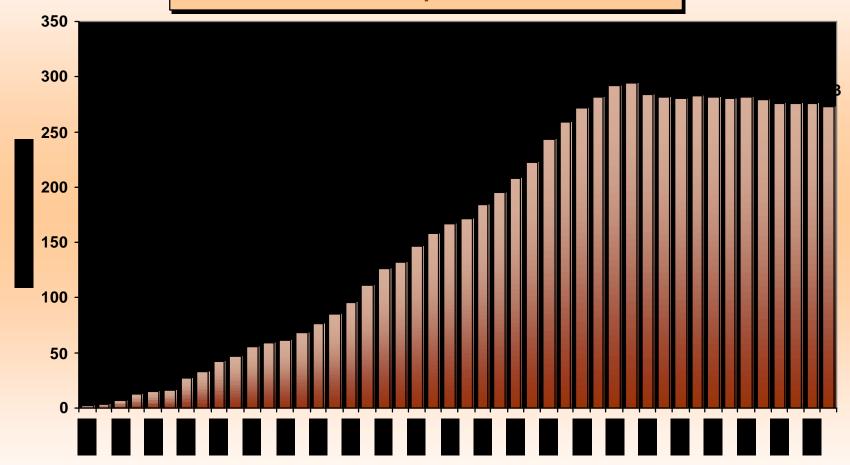
EU Framework Programme – The ESS project

ESS and the P&T programme in this framework

Justification – Alternatives – Cost and impact

Nuclear energy in the EU

- A very contrasted situation in Member States but:
 - 7 out of 15 countries don't operate nuclear power plants
 - 5 out of the 8 that operate nuclear power plants have decided either a moratorium or a phase-out
 - only 1 of the 3 that leave the option open has annouced a new construction project
- The role of nuclear energy today and in the future
 - 124 operating reactors but clear tendancy: decline
 - 35% of electricity consumption inside EU but tendancy: decline
- In line with international situation and tendancy



Current status of nuclear energy in Member States

COUNTRY	NUCLEAR REA Operating	CTORS (POWE Shut down	CR PLANTS) Construction	POLITICAL STATUS			
Austria	Started one constr	ruction then cance	No nuclear programme				
Belgium	7 (6ZGW)	1 None		Phase-out decision 2001			
Denmark	Never starte	ed a nuclear progr	No nuclear programme				
Finland	4 (2,7 GW)		1 project	Project authorizedZ2002 butZnot started yet			
France	59 (65 GW)	12	None	Decision open onZnew constructionZ(EPR)			
Germany	19 (22,4ZGW)	18	None	Phase-out law 2000			
Greece	Never starte	ed a nuclear progr	No nuclear programme				
Ireland	Never starte	ed a nuclear progr	No nuclear programme				
Italy	None	4	None	Phase-out decision (referendum in 1987)			
Luxemburg	Never starte	ed a nuclear progr	No nuclear programme				
Netherlands	1 (0,5 GW)	1	None	Moratorium in 1994 ButZclosureZpostponed			
Portugal	Never starte	ed a nuclear progr	No nuclear programme				
Spain	9 (7,8 GW)	1	None	Moratorium in 1984			
Sweden	11 (9,8 GW)	2	None	Phase-outZdecisionZinZ1980 but only 1Zreactor closed			
United Kingdom	33 (13,5 GW)	12	None	Plan to close oldest NoZplanZforZreplacement			
TOTAL	124	51	1 project				

Western Europe and North America Nuclear Reactors in Operation from 1956 to 2001

Source: PRIS, CEA 1998, ATOMWIRTSCHAFT, IAEA 2001

Nuclear energy at European Union level

• Euratom Treaty:

- clear goal of "promotion" of nuclear energy
- implemented a framework that strongly backed the large scale development of nuclear industry, including: economic distorsion, regulatory adapted framework and large R&D support from EU

• Green Paper on "Security of Energy Supply":

(issued by European Commission in Nov. 2000)

- underlines the role of nuclear energy in the EU security strategy
- identifies one key condition: solution to the waste management problem
- clearly defines other fields than nuclear energy as the top priorities: developing renewable energies and energy efficiency

Main political issues regarding nuclear energy and the EU

Accessing countries:

- 7 of the 12 candidate countries have a total of 22 nuclear reactors, of which 20 are of Soviet design
- it may "tilt" the balance of nuclear energy support inside EU
- but it raises strong concerns about nuclear safety

• Euratom reform needed:

- it created political and economical conditions favouring nuclear energy
- but it failed to develop a control over issues such as safety and waste
- and this will get worse as the european energy market gets more open

• European Commission "Nuclear Package":

- harmonization of nuclear safey standards
- need to progress on the waste management policy with clear priority to geological disposal (including a time schedule)

Waste (spent fuel) management policies in EU Member States

• Only some countries concerned or a concern for all countries:

- Principle: each country is responsible for the management of the waste it produces
- but because of the long-lived nature of the waste, a problem to all through future generations
- and because the potential large-scale dispersion of some nuclides, a regional or even global threat

• Various progress in spent fuel/HLW waste management but:

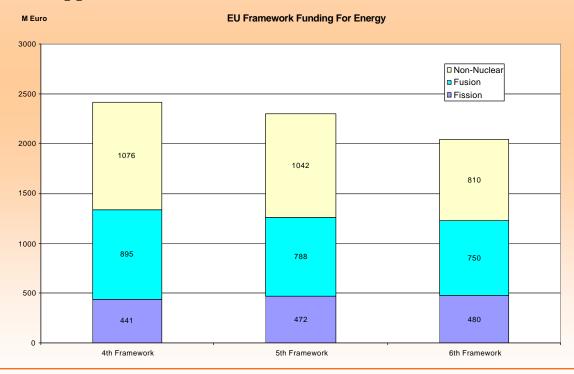
- no final solution implemented in any of the Member States yet
- a move from reprocessing to direct disposal
- geological disposal seen as unavoidable in most of the countries
- most advanced decision process in countries with a clear direct disposal strategy

• Various efforts in R&D for geological disposal and P&T

European Union R&D

• Framework Programmes (since 1984):

- 5 years programmes with 1 year overlapping
- implemented by the Commission after adoption by Council and Parliament, no "national quotas" by Member States
- next programme FP-6 starting in 2003
- main focus of FP-6: "creation of a true European Research Area" including the specific goal of developing "research infrastructures"


• A very important budget:

- -Euros 17.5 billions for FP-6
- ie 4% of the overall EU budget
- 5.4% of all public (non-military) research spending in Europe

European Union R&D on energy

- High budget for nuclear energy through Euratom
 - 7% of the FP-6 budget, ie Euros 1,230 million, spent on nuclear research
 - fission and fusion get 50% more funding than all other energy sources
 - support to JRC (Joint Research Centre), about 50% on nuclear research

European Union R&D on nuclear waste

• R&D budgets on partition & transmutation

- approx. 30 million Euros to R&D on transmutation in 2000-2001 (FP-5) ie about 15 million Euros by year
- -A total of 90 million Euros devoted to all waste management in FP-6

• The "road to transmutation": ADS

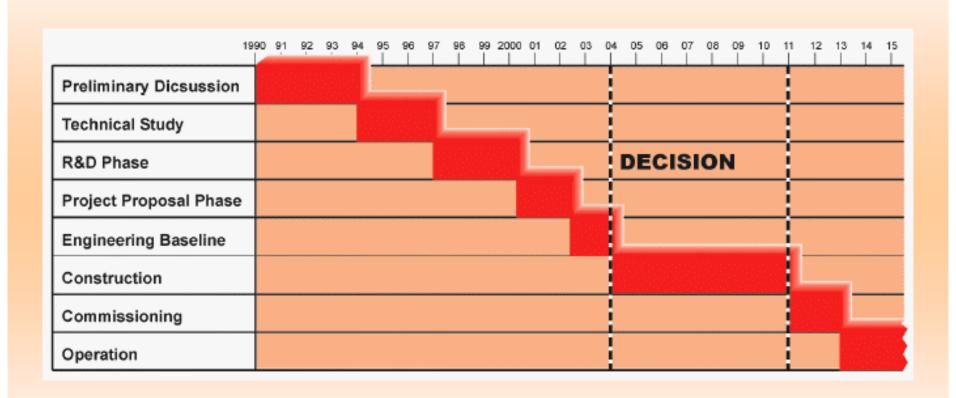
- 13 R&D projects funded under FP-5
- project of one infrastructure Accelarator Driven System
- 3 strategies: double stratum, single stratum, phase-out
- "the most effective" is double stratum
- Alternatives: upgrading of existing facilities (ILL, ISIS) or increased participation in external projects (US SNS, Japan JNS)

• But new priority given to geological disposal by the EC

- with time schedule that does not allow for P&T implementation

The ESS project:

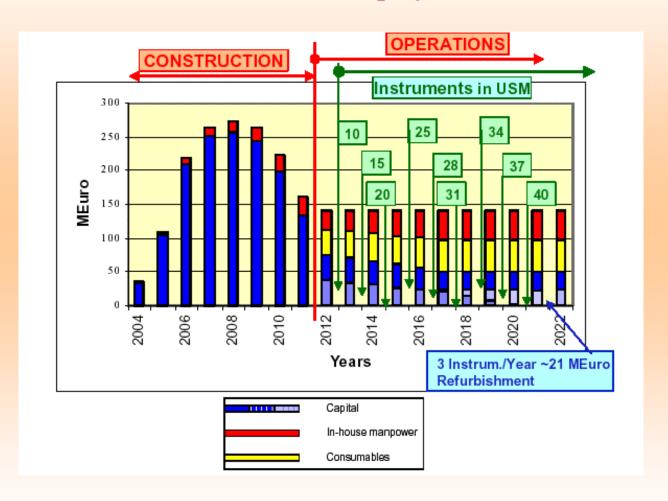
- officially not for P&T
- current design not suitable for P&T
- however, the basic design is flexible and fulfills the requirements for P&T implementation


• The ESS and ADS projects:

- same timetable
- same order of budgets

• ESS not (only) devoted to P&T:

- may benefit from more budget lines in FP-6 (and following programmes) than ADS, while P&T line is not enough for financing ADS
- but unlikely that EU financing goes in both projects



Year 2000+	01 02	03 04 05 06	07 08 09 10	11 12 13 14	15 20 30 45
	5 th FWP	6 th FWP	7th FWP		
ADS (Phase 1)					
Basic & Supporting R&D					
Choices of Options					
Design & Licensing					
Construction					
Low power testing					
Full power testing					
Operation					
ADT (Phase 2)					
Conversion					
Operation					
Prototype					
Industrial Deployment					

Year 2000+	1	2	3	4	5	6	7	8	9	10	11	12	Total
	5 th	FWP	6th FWP			7 th FWP							
Basic & Support R&D	(3)	30	90			70			10		200		
Engineering Design		5	75			60			10		150		
Construction		0	80			300			70		450		
Fuel		0	10			120			5	0	180		
Total	67	35	255		550			14	10	980			
R&D for Dedicated Fuel		5	<i>7</i> 0		70			3	5	180*			

^{*} Estimated cost to 2012 for development of dedicated fuel & fuel processing

ESS and/or ADS project(s): the justification case

- Basic principle: scientific community interest is not enough
- Need to look at:
 - Direct costs, direct benefits and alternatives
 - Indirect costs
 - Direct and indirect impacts
 - Systemic effects in other fields
- These issues have to be discussed before any new step in ESS and/or ADS implementation